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Abstract—Object storage technologies that take advantage of
multi-tier storage on HPC systems are emerging. However, to
use these technologies, applications now have to be modified
significantly from current I/O libraries. HDF5, a widely used
I/O middleware on HPC systems, provides a Virtual Object
Layer (VOL) that allows applications to connect to different
storage mechanisms transparently without requiring significant
code modifications. We recently designed the Proactive Data
Containers (PDC) object-centric storage system that provides the
capabilities of transparent, asynchronous, and autonomous data
movement taking advantage of multiple storage tiers—a decision
that has so far been left upon the user on most current systems.
To enable PDC’s features through HDF5 without modifying
application codes, we have developed an HDF5 VOL connector
that interfaces with PDC. We present in this paper the connector
interface and evaluate its performance on Cori, a Cray XC40
supercomputer located at the National Energy Research Scientific
Computing Center (NERSC). Our evaluation demonstrates up to
an 8× improvement compared to HDF5 that has the most recent
optimizations.
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systems; memory management; object-centric models; HDF5;

I. INTRODUCTION

The challenges for scientific applications on upcoming HPC
systems when rapidly moving toward exascale, are known
from three directions: extreme parallelism, a deepening het-
erogeneous memory hierarchy, and massively increasing data
by volume and complexity. Current data management and
I/O technologies present severe limitations in this regard: the
POSIX and MPI I/O standards that are the basis for existing
I/O libraries and parallel file systems have fundamental restric-
tions in the areas of scalable metadata operations, semantics-
based data movement, performance tuning, asynchronous op-
erations, and scalable consistency of distributed operations—
such that simple and efficient methods of data management
that can address these challenges are critical for running
scientific applications on future HPC systems.

In particular for I/O libraries, one of the challenges to
address the diverse performance characteristics of deep storage
hierarchy expected in exascale systems is the capability and
efficiency of data movement across storage levels. New archi-
tectures are considered to contain multiple layers of storage,
such as NVRAM on compute nodes, SSD-based burst buffers
shared by compute nodes, and disk or SSD-based parallel
file system, and tape-based archival storage. Typically, parallel
file systems are unaware of multi-level storage hierarchy and

need external middleware to manage the hierarchy together.
Traditional HPC data management and movement solutions
were designed for simpler systems, which are designed to
manage each storage layer separately; similarly, scientific data
models were designed for a two-tiered storage hierarchy. An-
other critical deficiency of traditional file systems is metadata
management, where files are managed with a small amount of
prescriptive metadata leading to the performance bottleneck at
metadata servers to locate the files.

Object-based storage systems provide semantics that have
the potential to reduce the complexity of storage systems
as well as to improve performance. We have developed a
user-space object-centric storage and data management sys-
tem, called Proactive Data Containers (PDC) [1] [2]. PDC
provides scalable distributed metadata management [1] and
the capabilities of transparent, asynchronous and autonomous
data movement to multiple storage tiers [2]. PDC offers a
programming interface that applications can use in order to
take advantage of the data and metadata management services.
A PDC container is a container that may reside in a single
storage layer (i.e., memory, burst buffer, disk) or span across
multiple layers. It contains both the metadata and data objects.
The PDC system provides an interface for creating, updating,
retrieving, and deleting data objects and for managing meta-
data on those objects. It is moving us away from existing file-
oriented methods, and instead bringing us to exploring novel
object-oriented data management methods in an autonomous
way.

HDF5 has been widely used in the context of HPC and
big data as an I/O middleware capable of supporting extreme
scale and complex data structures. HDF5’s Virtual Object
Layer (VOL) is a storage abstraction layer within the HDF5
library that is designed to target different storage mechanisms
while preserving HDF5 objects metadata. The VOL design
allows applications to connect to different storage mechanisms
transparently without significant code modifications. Several
HDF5 VOL connectors have been developed, for instance,
PLFS [3], Data Elevator [4], or more recently DAOS [5]—
offering HDF5 applications an easy way to use data storage
systems transparently with a significant I/O performance in-
crease over POSIX I/O.

Toward making PDC services available to legacy HDF5
applications with minimal source code changes, we implement
and present in this paper an HDF5 VOL connector interface



to PDC. This paper and contributions that it presents address
the following objectives:

1) Enabling object-oriented storage through HDF5 APIs
and library;

2) Enabling implicit and asynchronous data movement
through existing HDF5 APIs with minimal code modi-
fication;

3) Implementing data movement strategies using TCP and
Cray GNI transports;

4) Evaluating and demonstrating an object-centric HPC
storage system for scientific use cases using HDF5 APIs.

This paper is organized as follows: we first discuss related
work in Section II, and then introduce the object based
PDC system in Section III, which enables asynchronous data
movement. In Section IV we focus on the HDF5 virtual
object layer and provide details of our PDC VOL connector
implementation. In section V, we provide experimental results
evaluating new methodology in HDF5 utilizing I/O patterns
representative of science applications on HPC systems. We
conclude our work in Section VI.

II. RELATED WORK

POSIX I/O [6] is known for describing the file access API,
data model, and data consistency semantics. Current parallel
file systems, such as PVFS [7], [8], Lustre [9], GPFS [10],
and NFS [11] were all designed to comply with the POSIX
I/O standard. As the original POSIX I/O design was not
intended for highly concurrent programming models, which
are common in HPC systems [12], that design has now
become a performance bottleneck. With an increasing number
of memory storage layers and complexity of storage system
interactions, the issue of I/O performance is getting imperative
and significantly hinders the overall performance of applica-
tions [13], [14]. Research efforts have been made to relax the
POSIX semantics and alleviate the I/O bottleneck from high-
level libraries (e.g., HDF5 [15], netCDF [16], ADIOS [17]),
I/O middleware (e.g., MPI-IO [18], TAPIOCA [19]), to I/O
forwarding layers [20], all of which provide an array-based
data model to organize the data and define data access seman-
tics. However, deep memory and storage hierarchy introduced
into modern supercomputer systems further increase POSIX
I/O limitations.

Object-based storage has been proposed [21] [22] [23] [24]
to overcome the limitations of current parallel file systems,
which has long been considered a potential solution for man-
aging rich metadata in scalable environments. It describes an
abstract data container that consists of many byte-streams (or
objects), each with related attributes. RADOS [25], Amazon
S3 [26], and OpenStack Swift [27] have been developed
for managing data as objects and storing them in a flat
namespace. DAOS [28] is an object-based file system solution
currently under development, which provides asynchronous
data movement and manages objects in a hierarchical storage
with multiple layers, whose scalability is still under evaluation
and the features are in development [5]. Furthermore, efforts
to implement object-based storage is attempted on individual

layer separately, i.e., on disks, in NVRAM, and in memory.
SSDUP [29] proposed to redirect data write to burst buffer
when it detects random accesses for potential high latency if
writing to HDDs. The data in burst buffer is later flushed to
HDDs when size is over half of the burst buffer capacity.

Data Elevator [4] provides automatic caching and data
movement across multiple levels of storage hierarchies. It uses
shared burst buffer as a caching layer before writing data to file
system. UniviStor [30] integrates hierarchical and distributed
storage devices into a unified view of memory distributed
on compute nodes and storage layers in heterogeneous HPC
storage and achieves better performance than Data Elevator.
Both Data Elevator and UniviStor keep the supporting file
format of the data management software that they use and
wait for the data to be written to persistent storage. Towards
object-centric hierarchical storage system, Proactive Data
Containers [1] takes advantage of deep storage hierarchies,
and provides efficient strategies to support autonomous and
asynchronous data management by the PDC service, as well
as targeting deep storage hierarchies [2].

III. PDC SYSTEM ARCHITECTURE

In this section, we provide an overview of the Proactive
Data Containers system and focus on the capabilities and
semantics that it provides. For full details of the PDC system
implementation, please refer to our previous publications [1],
[2].

A. PDC Data Model and Semantics

As shown in Figure 1a, PDC organizes data as a set
of objects within a Container. Object is a generic term to
describe byte streams in an abstract manner. Parts of objects
are described using the term Regions, where the actual data
as well as the metadata associated to it is stored. Region is
the basic and fine-grain unit for data movement operations in
PDC—these operations are further described in more details.
Additionally, all of the previously mentioned entities include
Properties, regarded as metadata, which contain the descriptive
information that is set by the user, or generated by PDC.
The properties contain prescriptive metadata such as the data
type and dimensions that describe an object and provenance
such as user and application information. These objects are
managed by PDC services and can be placed at any level of
the storage system, and hence, containers, which consist of
scientific data, are abstracted within the entire storage stack.
This approach spreads the data over different locations within a
storage level, which we reference as storage locus. As shown
in Figure 1b, this representation is also augmented by two
types of operations: object mapping operations between a
memory buffer and an abstract PDC object; and transformation
operations while data is being moved from one storage locus
to the other.

We introduced the concept of object mapping in PDC
in [2]. As opposed to explicit read and write semantics, object
mapping makes data movement operations implicit to the user
by defining a map operation (i.e., an established memory to
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Fig. 1: PDC Representation. Abstracted data can reside at any level of the storage hierarchy.

storage relationship with a PDC entity). Similar to POSIX
mmap semantics, where a file can be mapped to a region of
memory, PDC’s mapping operations allow PDC object regions
to be accessed just like an array in a program. All the user
needs to do is to create a mapping between a region within
an applications memory and a region within a global PDC
object. Once a mapping is established, data movement can
occur to keep updates globally visible. However, as opposed
to standard POSIX mmap operations, concurrent access can
and is expected to occur. Therefore, PDC applications are
required to use an explicit lock operation on the object before
modifying its associated memory and to release that lock when
the modification is done. Unlocking a region allows the PDC
system to start data movement and to globally propagate the
modified data.

Data movement and I/O in PDC is realized asynchronously.
Once the data has been transferred to a storage locus, further
transfers to deeper levels of the storage hierarchy can be
realized by PDC without the need for an application to wait
for their completion. This capability provides the opportunity
for applications to overlap computation with I/O operations
and we can also make the safe assumption that data that is
written to deeper storage tiers will always fit into that tier,
memory representing the lower level and disk representing
the higher level. It is worth noting though that application’s
buffers, which are mapped, can only be re-used and modified
once a lock is re-acquired, hence when the transfer to the first
level of storage hierarchy has completed. Figure 2 illustrates
that mechanism and shows the data flow after a region unlock
request has been initiated. If the region is mapped, the data will
be first moved from the client’s memory to the data server, and
once it is safely transferred the region lock can be released.
PDC in the meantime though can carry on moving that data
to other storage tiers as needed.

B. User-space Client-Server Model

To execute these operations and manage data, PDC uses
a client-server model. Designing a client-server middleware
for HPC can be a hard process, both in terms of ease of
deployment alongside the user’s application and in terms

Fig. 2: Data flow through PDC on region unlock requests.

of system resource management. PDC services, though, are
designed to run in user space as an additional service process
with minimal disruption to the application. In our client-server
architecture, PDC servers are responsible for executing both
metadata and data management operations.

We have currently implemented two different modes for
users to deploy the PDC servers in user-space:

1) shared mode, where the server processes run on the
compute nodes alongside the client processes and share
CPU and memory resources as shown in Figure 3a;

2) dedicated mode, where all server processes are placed
on dedicated nodes that are separate from the nodes
where the client processes are running as shown in
figure 3b.

In the first case, the PDC system can take advantage of
shared-memory for efficient data movement between node-
local clients and servers, while in the second case the PDC
system must make use of the native interconnect for high-
speed transfers. Users can start any number of PDC servers
suitable for the application workload. In shared mode, users
are expected to only reserve one core per compute node to
run a PDC server while the rest of the cores may be used
to run the application processes. In dedicated mode, servers
and clients are all allocated to separate nodes, therefore the
number of servers used for PDC tasks directly depends on the



Compute Nodes

(a) Shared server modes, where servers and clients are located on the same node.

Compute Nodes Dedicated Nodes

(b) Dedicated server modes, where servers are on separate nodes.

Fig. 3: PDC service deployment modes.

user workload and the number of nodes that are available on
the system.

IV. CONNECTING PDC TO HDF5

We present in this section the HDF5 VOL connector inter-
face to PDC and its use by applications through the HDF5
API.

A. HDF5 Virtual Object Layer (VOL)

HDF5 is a well-established I/O middleware package, used
by a large number of HPC, scientific, and industrial appli-
cations. HDF5 provides them with file portability, reliability,
and performance when storing their data. By default, the HDF5
library uses its native file format when storing data and makes
use of MPI-IO to perform parallel I/O, as shown in Figure 4.
While this has been a good choice for many years, it also
carries on the burden of POSIX I/O semantics and limits that
are inherent to the existing native file format, which defines
an HDF5 file as a file structure that is contiguously mapped to
a file system. For instance, the native file format has a well-
known limitation of requiring collective creation of new HDF5
objects, such that the file metadata is ensured to be coherent
between processes.

With the emergence of file and storage systems that do
not strictly comply with the POSIX I/O standard, new file
formats and ways of performing I/O can be defined with
additional degrees of freedom. To provide that capability and
give developers the ability to store the data in the form of their
choice—while preserving the metadata that is attached to the
HDF5 objects—the HDF5 library defines a virtual object layer,
which will be released in the upcoming 1.12 version of the
library. The virtual object layer effectively allows developers to
redefine the HDF5 I/O API calls (i.e., related to operations on
files, groups, datasets, attributes, etc) by seamlessly re-routing
them to the corresponding VOL connector backend, which can
in turn translate these calls into the operations that it desires
to perform.

In the case of PDC and as shown in Figure 4, those
operations translate into PDC calls, which in turn interact
with the PDC runtime service and PDC storage backends.
One of the main advantages of the PDC runtime is that it
transparently and automatically provides new capabilities to
HDF5 such as asynchronous I/O without requiring any major
code change for the application user. One of the difficulties,
however, is potentially for the VOL connector developer as the
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Fig. 5: Dataset create call within the VOL. Terminal con-
nectors interface with storage systems while pass-through
connectors may record info on the fly and re-enter the VOL.

semantics that the underlying layer provides may not always
be a direct match with the ones that the HDF5 virtual object
layer requires.

Figure 5 shows how the data is accessed in the file through
a VOL connector callback. The VOL intercepts all HDF5
API calls that interact with files and reroutes those calls to
the associated VOL callback for the requested API function.
For example, a call to H5Dcreate() would be implemented
within the HDF5 library as Figure 5, where the connector is
responsible for the actual I/O operation to the storage system.



Similarly, other operations in the HDF5 library follow the
same execution pattern.

In order for an application to use an HDF5 VOL connector,
one must first register the connector to HDF5 by calling the
H5VLregister_connector() function. This effectively
registers and initializes the VOL connector, which if success-
fully initialized will return a unique VOL connector ID. That
ID can then be passed to the H5Pset_vol() routine, which
notifies the file access property list of the VOL connector it
needs to use when creating or opening the file (since different
VOL connectors could be initialized and used within the
same application). For convenience, the library also defines
environment variables that allow this information to be set by
a user and avoids code modification to the application. Once
the VOL connector information is set, the application can carry
on with regular HDF5 function use.

B. HDF5 PDC VOL Connector Implementation

Our PDC VOL connector currently only implements a
subset of the HDF5 API and in this paper we focus on file
and dataset operations. HDF5 files can be easily mapped to
PDC containers, while HDF5 datasets are naturally mapped to
PDC objects and PDC regions are similar in essence to HDF5
selections.

File create, open and close operations are a direct match to
PDC container operations, and therefore no particular imple-
mentation challenges were faced. Dataset operations, however,
differ from PDC’s API as the model chosen for PDC was
to make data movement implicit, whereas HDF5 chooses to
make data movement explicit by providing explicit read and
write semantics. We therefore walk through the details of our
implementation in that section.

As presented in the pseudo-code below, dataset cre-
ate and open operations map to PDCobj_create() and
PDCobj_open() respectively.

static void *
H5VL_pdc_dataset_create(void *obj, ..., const
char *name, hid_t dcpl_id, hid_t dapl_id,
hid_t dxpl_id, ...)

{
...
/* Create a new object */
dset->obj.obj_id = PDCobj_create(
o->file->cont_id, name, obj_prop);

...
}

static void *
H5VL_pdc_dataset_open(void *obj, ...,
const char *name, hid_t dapl_id,
hid_t dxpl_id, ...)

{
...
/* Open an existing object */
dset->obj.obj_id = PDCobj_open(
name, pdc_id);

...
}

Dataset write and read operations, however, require some
extra handling as PDC does not provide explicit read and
write semantics. Therefore, in these connectors callbacks,
PDCbuf_obj_map() is used to first map the region in
memory to the PDC object. A pair of lock and unlock
calls are then also used, unlock triggering asynchronous
data movement. Finally, the region is unmapped using the
PDCbuf_obj_unmap() call. Once H5Dwrite() returns
after the unlock call, the data region has been transferred
from the application buffer to the PDC data server, and the
second step of data movement to further storage level can be
taken care of by PDC, allowing further computation to be
overlapped.

Write implementation is illustrated in the pseudo code
below:

static herr_t
H5VL_pdc_dataset_write(void *_dset,
hid_t mem_type_id, hid_t mem_space_id,
hid_t file_space_id, hid_t dxpl_id,
const void *buf, ...)

{
...
// HDF5 selection to PDC region translation
...
PDCbuf_obj_map((void *)buf, mem_type,

mem_reg, dset->obj.obj_id, obj_reg);
...
PDCreg_lock(dset->obj.obj_id, obj_reg,

WRITE, NOBLOCK);
...
PDCreg_unlock(dset->obj.obj_id, obj_reg,

WRITE);
...
PDCbuf_obj_unmap((void *)buf, mem_reg,

dset->obj.obj_id, obj_reg);
...

}

Reads are implemented similarly to writes but because PDC
differentiates read locks from write locks (as read locks require
less constraints than write locks), we pass the READ flag to
both lock and unlock calls. This is illustrated in the pseudo-
code below:

static herr_t
H5VL_pdc_dataset_read(void *_dset,
hid_t mem_type_id, hid_t mem_space_id,
hid_t file_space_id, hid_t dxpl_id,
void *buf, ...)

{
...
// HDF5 selection to PDC region translation
...
PDCbuf_obj_map((void *)buf, mem_type,

mem_reg, dset->obj.obj_id, obj_reg);
...
PDCreg_lock(dset->obj.obj_id, obj_reg,

READ, NOBLOCK);
...
PDCreg_unlock(dset->obj.obj_id, obj_reg,

READ);
...
PDCbuf_obj_unmap((void *)buf, mem_reg,



dset->obj.obj_id, obj_reg);
...

}

The dataset is then closed using PDCobj_close() as
illustrated below:

static herr_t
H5VL_pdc_dataset_close(void *_dset,
hid_t dxpl_id, ...)

{
...
/* Close the object */
PDCobj_close(dset->obj.obj_id);
...

}

C. Application Usage Example with the HDF5 PDC VOL

We provide a detailed example of how an application I/O
kernel can be modified to support the HDF5 PDC VOL
connector in Figure 6 and mark the two extra function calls
that are required in order to make use of the PDC VOL
connector. As previously mentioned, HDF5 also provides
a way of specifying that information through environment
variables, and allowing for no code changes.

For an application to use the HDF5 PDC VOL connector
for reading a dataset, it simply needs to follow the write
example, using H5Dopen() instead of H5Dcreate(), and
then call H5Dread() instead of H5Dwrite(). All of the
function mapping details from HDF5 to the underlying PDC
APIs are hidden by the HDF5 VOL design and are once again
transparent to the user. The underlying VOL connector inter-
nally initiates map, lock, lock release and unmap operations
to that PDC object to trigger data movement and enables
asynchronous data movement, transparently allowing for data
movement to be overlapped by the following application
computation step.

V. EXPERIMENTAL EVALUATION

We evaluate in this section the performance of the PDC
VOL connector and also demonstrate the impact of the number
of servers on the performance when PDC is deployed in
dedicated mode. We compare the performance of writing
multiple time steps using the PDC VOL connector with native
HDF5. Lastly, we compare the read performance of the PDC
VOL connector with that of native HDF5.

A. Experiment setup

To evaluate the performance of the PDC VOL, we ran the
experiments with different configurations. We installed PDC
on the Cori supercomputer at the National Energy Research
Scientific Computing Center (NERSC), which is a Cray XC40
supercomputer with 1630 Intel Xeon Haswell nodes. Each
node consists of 32 cores and 128GB of memory. The sup-
porting storage system, Lustre, has 248 object storage targets
(OSTs) and is shared by all users.

We ran the experiments using both shared and dedicated
deployment modes. With a shared server and client config-
uration (shared mode), we have one PDC server on each

node, which utilizes one core, leaving the remaining 31 cores
for user application execution. In dedicated mode, the PDC
servers and user’s application are on separate nodes. PDC
servers in this configuration have only one server per node that
provides both metadata server and data server services. In both
configuration cases, we have relied on the Mercury [31] RPC
library, an HPC-optimized C library for Remote Procedure
Calls, as the communication mechanism. In our experiments,
we configure Mercury with two communication protocols
using the libfabric plugin [32] over TCP and Cray GNI.
Note that in the latter case, the PDC server is configured
to make use of Cray Dynamic RDMA Credentials (DRC)
[33] to allow the user’s applications and PDC server to share
credentials and communicate together through GNI. GNI job
runs are therefore currently a little more complex in terms of
deployment. To use Cray GNI on Cori, the PDC server/ser-
vice has to first acquire a credential and wait for the client
application to start. The client application then first contacts
the server over TCP so that the job can be granted access and
use the DRC token. The generated DRC credential is later
passed down to Mercury and used by both server and client
sides for execution. Once the communication is established,
the server and client can proceed and resume their normal
execution. Using GNI currently requires the server and client
to be in separate sessions but to start at the same time. This
is achieved through the srun pack-group option. The job
script for that run is attached in Appendix Figure 13, Figure 14
and Figure 15.

We used a plasma-physics application’s I/O kernel, called
VPIC-IO to evaluate the PDC system’s performance. VPIC-IO
is extracted from VPIC [34], a code developed for simulating
several plasma physics phenomenon, including magnetic re-
connection in space weather. In VPIC-IO, each MPI process
writes a region of 8M (8 × 220) particles and each particle
has 8 properties. Each region is represented with a 1-D array
with a size of 8M on one process. VPIC data structures use
1-D arrays for representing each property and each property
is retreated as an object in our design. We also evaluate the
read performance by the BD-CATS I/O kernel [35], which
is extracted from a parallel clustering algorithm, used for
analyzing the data produced by particle simulations. It reads
data generated by VPIC or VPIC-IO using the same I/O trace
as the BD-CATS implementation of the DBSCAN algorithm.
In this kernel, data related to the particles are read among
all of the MPI processes in a load-balanced distribution. The
original kernels use HDF5 for performing I/O and are highly
tuned using MPI-IO and Lustre optimizations [36], [37]. In
this paper, we simply re-use those I/O kernels to make them
use the PDC VOL connector instead of going through native
HDF5 and MPI I/O. The total data size being accounted for
goes from 248GB for 992 processes from 32 nodes to 3968GB
for 15872 processes from 512 nodes.

B. H5Dwrite Performance Comparison

We compare the H5Dwrite() performance of VPIC-IO in
Figure 7 using the following methodologies: HDF5 collective



hid_t pdc_vol_id, file_id, fapl_id;
H5VL_pdc_info_t pdc_vol; // to pass VOL connector info
...
/* Register PDC VOL */
pdc_vol_id = H5VLregister_connector(&H5VL_pdc_g, H5P_DEFAULT); // extra step to use PDC VOL

/* Create a new file access property */
fapl_id = H5Pcreate(H5P_FILE_ACCESS);

/* Set the VOL */
H5Pset_vol(fapl_id, pdc_vol_id, &pdc_vol); // extra step to use PDC VOL

/* Create file */
file_id = H5Fcreate(argv[1], H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
...
/* Close property */
H5Pclose(fapl_id);

/* Create dataset */
dset_id1 = H5Dcreate(file_id, "x", H5T_NATIVE_FLOAT, filespace, H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);

/* Write the data */
H5Dwrite(dset_id1, H5T_NATIVE_FLOAT, memspace, filespace, fapl_id, x);

/* Close dataset */
H5Dclose(dset_id1);

/* Close file */
H5Fclose(file_id);

Fig. 6: Application usage example of the PDC VOL connector. There are three lines of code to the original application code
to use the PDC VOL.

I/O, HDF5 independent I/O, PDC VOL in shared server mode,
PDC VOL in dedicated server mode using TCP protocol
and PDC VOL in dedicated server mode using Cray GNI.
The H5Dwrite() function using the PDC VOL connector
involves the times to map the memory buffer to a remote
object and to lock and then release the lock on an object
without waiting for data to be flushed to disk, while the native
H5Dwrite() function is issuing MPI I/O calls directly to the
file system. For all the evaluations presented in this section, we
run the experiments at least ten times and report best numbers.
Since there are 8 properties in VPIC-IO, the H5Dwrite()
function is called 8 times. The time is measured by adding
an MPI barrier before the first call and another after the last
call to the H5Dwrite() function. The total write time for
all the 8 properties is collected and used for evaluation in
this section. The x-axis shows the number of client processes
with the number of PDC servers (in brackets, in these plots as
well as in the remaining plots in this section, unless specified
otherwise). The native HDF5 I/O performance (collective and
independent) was observed on Cori at our time of experiment,
which could vary depending on the system software stack
installed and system load.

The performance of the PDC VOL connector in shared
server mode is 1.7X to 4.9X faster compared to independent
native HDF5 method, with an average of 3.3X, and is 2.9X to
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Fig. 7: H5Dwrite() performance using different methodolo-
gies for one time step. Total data size goes from 248GB for
992 processes to 3968GB for 15872 processes. The number
of PDC servers for each configuration is equal to the number
of compute nodes, indicated in parenthesis.

4.2X faster compared to collective native HDF5 method, with
an average of 3.5X. In dedicated server mode, with additional
nodes utilized as servers, the PDC VOL connector achieves
3.1X to 6.7X faster performance compared to collective HDF5
I/O, with an average of 4.7X, and achieves 3.8X to 4.8X faster
performance compared to independent native HDF5, with an
average of 4.4X. To further improve the performance, we



evaluate the performance with Cray GNI. It allows 4.6X to
15.6X speedup compared to collective native HDF5, with an
average of 8.3X, and allows 6.1X to 7.6X speedup compared
to independent native HDF5, with an average of 6.6X. With
native HDF5, collective or independent, the data is written
directly to the lustre file system. With all the other three
PDC VOL asynchronous methods, the data is moved to PDC
servers when H5Dwrite() returns, allowing for further data
movement to the file system to be overlapped with following
computation. Figure 7 shows the actual wait time in the
H5Dwrite() call for the user, and not the total time for
data movement down to the file system.

C. Varying Servers in Dedicated Mode

In the previous experiments in dedicated mode, we had a
configuration of one server per node and the number of server
processes was the same as the number of client nodes. In this
section we evaluate the impact of the number of servers on
the performance of H5Dwrite(). The experiments are run
with 992 client processes on 32 nodes and involve varying
number of additional nodes, from the number of 4 to 32,
for 32 servers sitting. The total size of data to be written
is 248GB. Figure 8 shows one time step of H5Dwrite()
time, increasing when less servers are available. More servers
would naturally provide more bandwidth and achieve the best
performance depending on the system resources availability,
though fewer servers are still able to provide a reasonable
performance.

D. Multiple Time Steps of H5Dwrite Performance Comparison

We mentioned in section V-B that data movement is still
happening after the H5Dwrite() call returns, unless the
application user chooses to wait for the data to be flushed
to disk. We experimented with 5 successive time steps of
I/O using H5Dwrite() calls for each dataset and show the
results in Figure 9. In this case, all data will be flushed between
time steps. We use the PDC VOL connector in shared server
mode for this experiment and observed 4.8X to 9.5X speedup
compared to native HDF5 collective I/O and 3.8X to 8.3X
speedup compared to native HDF5 independent I/O, with an
average speedup of 7.3X and 6.6X separately.

E. Total Execution Time for VPIC-IO

To reflect the total time consumed by the whole VPIC-
IO application, we measured the time from the first HDF5
file create by H5Fcreate() until HDF5 file close function
H5Fclose(). In this experiment we only covered one time
step of H5Dwrite() for each property within VPIC-IO. The
more time steps the application executes, the more perfor-
mance benefits it gains by utilizing the PDC VOL connector.
Figure 10 shows the real total execution time of VPIC-IO
covering just one time step of H5Dwrite(). We can see
that the time for the PDC VOL in shared server mode is 1.5X
to 2.9X faster compared to native HDF5 collective I/O, and
1.4X to 2.2X faster than HDF5 independent I/O. For the best
case, using a PDC separate server and GNI, it achieves 1.4X
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Fig. 8: H5Dwrite() performance using dedicated server
mode with varying the number of servers. Total data size is
248GB for 992 processes.
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Fig. 9: Total time including H5Dwrite() for 5 timesteps and
H5Dclose().

to 5.0X and 1.8X to 2.2X performance speedup compared to
HDF5 collective and independent I/O respectively. This time
reflects when the user chooses to wait for data to be flushed
to disk and then exit from the application. If the user chooses
not to wait for the data but lets the server working on it, the
performance is shown in Figure 11. The performance when
letting PDC taking care of the data achieves 2.1X to 3.8X and
1.8X to 3.2X faster performance compared to HDF5 collective
and independent I/O methods respectively.

F. H5Dread Performance Comparison

BD-CATS-IO is a read I/O kernel, which reads data pro-
duced by VPIC-IO in a load balanced way. In Figure 12,
we show the performance of reading a single time step of
data that was written in previous VPIC experiments, calling
instead the H5Dread() function. The PDC VOL connector in
shared server mode achieves 1.3X to 1.7X better performance
compared to native HDF5 collective I/O and 1.4X to 2.8X
better performance compared to native HDF5 independent I/O.
The PDC VOL connector in dedicated server mode is 1.8X to
3.4X faster compared to native HDF5 collective I/O, and is
2.7X to 4.6X faster compared to native HDF5 independent
I/O. With Cray GNI, the PDC VOL in dedicated server



0

30

60

90

120

992 (32) 1984 (64) 3968 (128) 7936 (256) 15872 (512)

Ti
m

e 
in

 S
ec

on
ds

Number of Client Processes (Nodes)

Native HDF5 (COLLECTIVE) Native HDF5 (INDEPENDENT)
HDF5 PDC VOL shared server HDF5 PDC VOL separate server  TCP
HDF5 PDC VOL separate server  GNI

Fig. 10: Total elapsed time for the execution of VPIC-IO.
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Fig. 11: Total elapsed time for the execution of VPIC-IO if
the user chooses not to wait for data to be flushed to disk.

mode executed 2.1X to 5.3X faster compared to native HDF5
collective I/O, and 4.1X to 5.8X faster compared to HDF5
independent I/O. The read performance speedup is not as much
as the write performance due to the fact that H5Dread()
requires the data to be fetched from the PDC backend file
system to PDC data server and then tranferred back to the
application.
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Fig. 12: H5Dread() performance using different method-
ologies for one timestep. Total data size goes from 248GB for
992 processes to 3968GB for 15872 processes. The number
of servers for each setup is the number in parenthesis.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented how to take advantage of PDC
through HDF5 by developing an HDF5 VOL connector, which
enables implicit and asynchronous data movement to different
storage tiers with minimal to zero code modification, and is
able to be deployed in different scenarios using native network
fabric transports such as Cray GNI on modern supercomputers.
We also evaluated and demonstrated that interface, which
showed a significant performance gain over native HDF5,
as file system accesses are no longer issued directly by the
application, but are instead handled by the PDC service.

When mapping HDF5 to PDC, one apparent limitation of
HDF5 that transpired is its current inability to provide to the
application a way of directly exposing the user’s memory, as
PDC is able to do through map operations. We will in future
work study how that type of semantic could be brought into
HDF5, allowing users to establish a direct mapping of the
application memory to the storage, which similarly to mmap
operations can allow more efficient transfers and paging to take
place and be handled by the PDC system, rather than having
users to explicitly direct of the amount data that needs to be
written at a given time. This naturally requires applications
to adapt their code in order to reflect this type of change,
and would hence be more intrusive than the current solution
presented in the paper.
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APPENDIX

srun --pack-group=0 -n 1 drc_server.sh &
sleep 5
srun --pack-group=1 -n 1 drc_client.sh
export PDC_DRC_KEY=‘cat $SCRATCH/drc.txt‘
....
srun --pack-group=0 -n 32 pdc_server.exe &
sleep 5
srun --pack-group=1 -n 992 h5_pdc_write cc

Fig. 13: A sample Slurm job script used to launch a test
application with PDC VOL connector using Cray GNI.

procIdx=${SLURM_PROCID}
if [ $procIdx -eq 0 ]; then
/mercury/build/bin/hg_test_drc_auth -c ofi -p

tcp -H ipogif0 -L -a
fi

Fig. 14: A sample job script (drc server.sh), used to obtain
dynamic RDMA credentials.



procIdx=${SLURM_PROCID}
if [ $procIdx -eq 0 ]; then
/mercury/build/bin/hg_test_drc_auth -c ofi -p

tcp -H ipogif0 -a
fi

Fig. 15: A sample job script (drc client.sh), which is used to
obtain DRC.

In Figures 13, 14, and 15, we provide sample Slurm job
scripts for running the PDC VOL using Cray GNI on Cori su-
percomputer at NERSC. The first script (Figure 13) is used to
launch a test application with the PDC VOL using Cray GNI. It
has four srun commands: Dynamic RDMA creditials (DRC)
server, DRC client, PDC server, and the HDF5 application. In
Figure 14, we show the script (drc_server.sh) to obtain
DRC and in Figure 15, we show the script for running the
Mercury client to obtain DRC.
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